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The quantum rotor as an anomalous gauge theory 

Clovis Wotzasekt 
Department of Physics, University of Illinois at Urbana-Champaign, 11 10 W Green Street, 
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Received 18 June 1990 

Abstract. In the planar rotor, or the free particle on a circle, if we ignore the contributions 
to the propagator coming from paths belonging to non-trivial homotopy classes, we end 
up with a quantum theory which does not realize a classical symmetry. Applying a 
formalism, recently developed by Harada and Tsutsui and by Schaposnik, Babelon and 
Vialet in the context of anomalous gauge theories (ACT), will permit us to find the 
appropriated Wess-Zumino functional, restoring in this way the classical symmetry. The 
Wess-Zumino field is identified as a topological charge, the winding number. Based on 
this result a new construction for AGT is suggested which is anomaly free. 

In recent years the study of anomalous gauge theories (AGT) has attracted a great deal 
of attention, mainly after the proposal by Polyakov [ 11 and, independently, by Faddeev 
and Shatashvili [2] that such theories could be consistently quantized with the inclusion 
of a compensator field which had been decoupled at classical level. Particularly for 
the case of gauge fields interacting with chiral fermions, it was believed that the only 
possible quantization scheme would be achieved by carefully adjusting the fermionic 
content of the theory [3]. On the other hand, Jackiw and Rajaraman (JR)  [4], investigat- 
ing the chiral version of the two-dimensional Schwinger model (CSM),  found that in 
spite of the presence of an anomaly in the gauge current this theory was consistent 
and unitary. 

Harada and Tsutsui ( HT) [ 51 and Schaposnik, Babelon and Vialet ( SBV) [6] proposed 
then, following the spirit of [l], that the unitarity in the JR model was a consequence 
of the presence of a Wess-Zumino (wz) functional [7], which ultimately cancelled the 
anomaly. The CSM was then to be viewed as a gauge fixed version (called unitary 
gauge) of a truly gauge invariant theory [8]. To perform their analysis these authors 
made use of the Faddeev-Popov identity (FPI )  [9] which would eventually produce 
the desired wz functional. This technique was later extended outside the two- 
dimensional domain by Harada and Tsutsui [ 101. To my understanding the FPI is just 
a trick which permits one to avoid the analysis of the existing constraints of the theory, 
as has been done by Faddeev [ 1 1 1  and Senjanovic [ 121. Moreover the FPI is a device 
especially designed to fix the gauge in non-anomalous theories. HT and SBV, on the 
other hand, used it to ‘unfix’ the gauge of a theory that has had its gauge degree of 
freedom fixed by nature or by a wrong set of quantization rules. Dangerous, is the 
least one can say of its use in an AGT which does not possess that symmetry. An 
alternative approach [13] would be to look for a ‘modified’ theory, with the same 
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underlying physics, but where the original second-class constraints had been tuned 
into first-class, signalling the recovery of gauge invariance. It is somewhat puzzling 
that the approach of [SI and [6] gives the right answer and to my knowledge no attempt 
has been made yet to justify this procedure and clarify the physical role played by the 
wz term found by HT and SBV in the CSM. To shed some light on this matter one's 
attitude must be to look for some well understood model which would support their 
formalism. It is exactly this last point that we are proposing to do in this communication. 

Before starting it is only fair to advise the reader about the speculative nature of 
the ideas presented in this letter, the reason being that the conclusions we have taken 
were based on results found on a quantum mechanical model with an artificially 
produced 'global anomaly' and not due to regularization of infinitely many degrees of 
freedom of a truly quantum field theory. Whether or not one can extend, legitimately, 
the conclusions of this 'fake anomaly' over the universe of anomalously broken gauge 
theories is unclear to us at the present, but we think that the parallelism between these 
two systems is very appealing and deserving of more attention. 

Our approach here is the following: working with the 'amputated quantum rotor' 
[ 141, where the contributions of all the non-trivial topological sectors are ignored, will 
lead to a theory that mimics in some aspects an AGT. An obvious symmetry possessed 
by the classical system when it rounds SI an integer number of times is lost in the 
quantized model. Applying the HT-SBV approach will then cancel the 'anomaly' and 
produce the correct answer. It will be possible then to identify the wz field with the 
topological charge of this theory, i.e. the numbers of turns around SI. In view of these 
results one is then naturally led to consider the reverse argument and look at the 
anomaly of an AGT as a result of a non-trivial topology in its group manifold, which 
could be caused by a non-simply-connected structure. We will show that all the known 
results will follow from this argument and illustrate it with the CSM. 

To compute the propagator for the quantum rotor is a simple quantum mechanical 
exercise. However, if we ignore all the non-trivial topological sectors, we end up with 
the following propagator: 

Here 4 is a compact angle variable (modulo 2 ~ )  traversed by a particle of unit mass 
per unit time. While the classical problem possesses a symmetry when 4 rounds the 
ring an integer number of times, its (incorrect) quantum counterpart does not share 
the same symmetry, i.e. 

K(cj)-+ K ( 4 + 2 n ~ )  f K ( 4 ) .  ( 2 )  

The system is then said to be anomalous. Let us introduce the following notation: 

& " = 4 + 2 m  

4"-' = 4 - 2 m  

K n ( 4 ) = K ( 4 " ) = K ( 4 + 2 m ) .  

(3 1 

The vacuum functional for this theory, defined as 
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is not invariant under the transformation 4 + 4", which we will take license to call 
'gauge transformation'. Following HT and SBV we resolve the identity in the Faddeev- 
Popov way 

1 = 9 n A [ + ] W [ + " ]  ( 5 )  5 
with obvious notation for the symbols introduced. Inserting this result into 2, changing 
the order of integration and relabelling the field 4 we find 

Z =  I 94A[+]SF[4]  ei"(+) (6) 

where 

Contrary to the case above, the functional @( 4)  is invariant under the transformations 
4 + 4 n  

In the HT-SBV language the system has recovered its 'gauge invariance' due to the 
presence of a wz functional that has been extracted from the functional measure. HT 

called W (  4 ' - I )  a standard action, defining the wz functional by 

(9 )  ~ ( 4 " - ' )  = ~ ( 4 )  + ( ~ ( 4 ,  n - ' ) .  

a(4, n - I )  = 2 m 2 - 2 n 4  (10 )  

In our simple example the wz term is found to be 

and the 'gauge invariant' functional @( 4) becomes 

= eiw(+) g n  e iu (+ ,n -* )  

- - e i W ( + )  ( 1 1 )  

I 
63(4, 2) 

where e3(z, t )  is the third Jacobi theta-function [ l 5 ]  defined as 

The invariance of @(+) under the gauge transformations is then guaranteed by the 
well known property 

03(z, t ) .  ( 13 )  e3(z+  tr, t )  = e-iTr-2iz 
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The physical situation in which a magnetic flux is confined in a region encircled by 
S’ can be easily incorporated in our problem if we generalize the gauge invariant 
propagator in the following way 

a 4 1 +  m 4 1 =  5 9nf(n)K-n[41 (14) 

where f( n) is a yet unknown field. Next we weaken the gauge invariance of if[ 41 to 
be? 

2;[41+ i , M m I  = g ( m ) Q $ l .  (15) 

Combining these two conditions we conclude that 

f(n) = g(n)  =e ins  (16) 
which is just the amount of phase the particle picks up in each turn. Here 6 is 
proportional to the flux intensity. The phenomenon depicted above is analogous to 
the vacuum structure of the Yang-Mills theory where n is the instanton number and 
6 is the labelling of the vacua states. 

One can recognize that the gauge invariant propagator k[4] obtained when the 
contributions from the wz functional were taken into account is the correct propagator 
for the quantum rotor when one ‘remembers’ to include the paths belonging to different 
homotopy classes. The field variable n playing the role of the wz field in the HT-SBV 

approach is here identified with the winding number. It becomes clear then that the 
anomalous behaviour of K (4)  was exclusively due to our poor understanding of the 
system’s topological structure. 

In view of the above results one is led to consider that the same sort of mechanism 
could be responsible for the anomaly in AGT, i.e. the presence of an anomaly is just 
the result of our ignorance about the vacuum structure of the theory. Even if the theory 
is a non-anomalous one, what should we preferably do in order to quantize it? Should 
we select a specific gauge configuration (by gauge fixing), or consider an average over 
all field configurations? By adopting the second point of view we are left with a 
non-anomalous theory even if we start with an effective potential which is not gauge 
invariant (obtained by integrating out the interacting fermions, for example). Consider 
then the following vacuum functional: 

Z = BA e’ W x ( A )  (17) I g  

I 

where Wg(Ah)=  Wgh(A) f  W g ( A ) .  The sum (functional) may be viewed either as a 
sum over distinct topological sectors of the vacuum or as an average over all field 
configurations as discussed above. The gauge invariance is automatically guaranteed 
by the invariance of the functional measure under the group of gauge transformations. 
Introducing the wz functional as before we have 

(18) z = GJA eiWIAl+iWw,[Al 

t This is just the usual statement that the quantum mechanical wavefunction can change by a phase when 
the system undergoes some transformation without affecting physical results. 
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The total functional $[A] = W[A] + W,,[A] is certainly gauge invariant since each 
term in the right-hand side compensates for the gauge non-invariance of the other. 
This property can be nicely illustrated in the CSM, whose effective action is 

The wz term is [13] 

. 

By integrating out the wz field e we obtain 

Adding together W[A] and W,,[A] results in the functional 

47r a - 1  

which is, as promised, gauge invariant. 
A recent tentative attempt to extend Faddeev and Shatashvili’s ideas into an 

anomalous model in four dimensions was made by Levy [ 161. He criticizes the approach 
advocated by the authors of [2] in the sense that it (apparently) seems to be a mixed 
quantum classical procedure, since the compensator field to be included into the 
classical action is already of order h. While that seems to be true in the canonical 
point of view, we think that the example presented here shows that the appearance of 
a wz term is a consequence of the quantization process, i.e. the result of many 
inequivalent quantum realizations of the same classical theory. 

We conclude by suggesting that the possible mechanism behind the structure 
proposed in this letter could be the ability that chiral fermions have of ‘opening holes’ 
in the gauge fields’ configuration space, similar to a Dirac string. In the case of Dirac 
fermions, made of two (opposite) chiral fermions, the configuration space is again 
simply connected since each fermion cancels the effect of the other, unless they are 
coupled to the gauge field with different strengths [ 171. Even though the gauge symmetry 
is restored, for the case of Dirac fermions, the sewing of the two chiral fermions 
together still leaves an observable effect in a form of an axial anomaly, since they must 
share the same Dirac sea. 

The author would like to thank Professor M Stone for a critical reading of the 
manuscript. He also wants to thank CAPES for financial support. This work is partially 
supported by NSF PHY87-01775. 
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